免费游戏不用登录直接玩,苹果6s plus,不朽情缘滴血大奖视频,电子pga是什么意思

高中數學說課稿

時間:2021-08-15 12:21:17 高中說課稿 我要投稿

實用的高中數學說課稿范文合集七篇

  作為一名人民教師,通常需要準備好一份說課稿,編寫說課稿助于積累教學經驗,不斷提高教學質量。優秀的說課稿都具備一些什么特點呢?以下是小編整理的高中數學說課稿7篇,希望能夠幫助到大家。

實用的高中數學說課稿范文合集七篇

高中數學說課稿 篇1

  一、教材分析

  1、教材內容

  本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》§2。1。3函數簡單性質的第一課時,該課時主要學習增函數、減函數的定義,以及應用定義解決一些簡單問題。

  2、教材所處地位、作用

  函數的性質是研究函數的基石,函數的單調性是首先研究的一個性質。通過對本節課的學習,讓學生領會函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡單的實際問題。通過上述活動,加深對函數本質的認識。函數的單調性既是學生學過的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎。此外在比較數的大小、函數的定性分析以及相關的數學綜合問題中也有廣泛的應用,它是整個高中數學中起著承上啟下作用的核心知識之一。從方法論的角度分析,本節教學過程中還滲透了探索發現、數形結合、歸納轉化等數學思想方法。

  3、教學目標

  (1)知識與技能:使學生理解函數單調性的概念,掌握判別函數單調性

  的方法;

  (2)過程與方法:從實際生活問題出發,引導學生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問題,讓學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。

  (3)情感態度價值觀:讓學生體驗數學的科學功能、符號功能和工具功能,培養學生直覺觀察、探索發現、科學論證的良好的數學思維品質。

  4、重點與難點

  教學重點(1)函數單調性的概念;

  (2)運用函數單調性的定義判斷一些函數的單調性。

  教學難點(1)函數單調性的知識形成;

  (2)利用函數圖象、單調性的定義判斷和證明函數的單調性。

  二、教法分析與學法指導

  本節課是一節較為抽象的數學概念課,因此,教法上要注意:

  1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發了學生求知欲,調動了學生主體參與的積極性。

  2、在運用定義解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決。

  3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用。具體體現在設問、講評和規范書寫等方面,要教會學生清晰的思維、嚴謹的推理,并成功地完成書面表達。

  4、采用投影儀、多媒體等現代教學手段,增大教學容量和直觀性。

  在學法上:

  1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和解決問題的能力。

  2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍。

  三、 教學過程

  教學

  環節

  教 學 過 程

  設 計 意 圖

  問題

  情境

  (播放中央電視臺天氣預報的音樂)

  滿足在定義域上的單調性的討論。

  2、重視學生發現的過程。如:充分暴露學生將函數圖象(形)的特征轉化為函數值(數)的特征的思維過程;充分暴露在正、反兩個方面探討活動中,學生認知結構升華、發現的過程。

  3、重視學生的動手實踐過程。通過對定義的解讀、鞏固,讓學生動手去實踐運用定義。

  4、重視課堂問題的設計。通過對問題的設計,引導學生解決問題。

高中數學說課稿 篇2

  各位老師:

  大家好!我叫***,來自**。我說課的題目是《概率的基本性質》,內容選自于高中教材新課程人教A版必修3第三章第一節,課時安排為三個課時,本節課內容為第三課時。下面我將從教材分析、教學目標分析、教法分析、教學過程分析四大方面來闡述我對這節課的分析和設計:

  一、教材分析

  1、教材所處的地位和作用

  本節課主要包含了兩部分內容:一是事件的關系與運算,二是概率的基本性質,多以基本概念和性質為主。它是本冊第二章統計的延伸,又是后面"古典概型"及"幾何概型"的基礎。在整個教學中起到承上啟下的作用。同時也是新課改以來考查的熱點之一。

  2、教學的重點和難點

  重點:概率的加法公式及其應用;事件的關系與運算。

  難點:互斥事件與對立事件的區別與聯系

  二、教學目標分析

  1.知識與技能目標

  ⑴了解隨機事件間的基本關系與運算;

  ⑵掌握概率的幾個基本性質,并會用其解決簡單的概率問題。

  2、過程與方法:

  ⑴通過觀察、類比、歸納培養學生運用數學知識的綜合能力;

  ⑵通過學生自主探究,合作探究培養學生的動手探索的能力。

  3、情感態度與價值觀:

  通過數學活動,了解教學與實際生活的密切聯系,感受數學知識應用于現實世界的具體情境,從而激發學習數學的情趣。

  三、教法分析

  采用實驗觀察、質疑啟發、類比聯想、探究歸納的教學方法。

  四、教學過程分析

  1、創設情境,引入新課

  在擲骰子的試驗中,我們可以定義許多事件,如:

  c1=﹛出現的點數=1﹜,c2=﹛出現的點數=2﹜

  c3=﹛出現的點數=3﹜,c4=﹛出現的點數=4﹜

  c5=﹛出現的點數=5﹜,c6=﹛出現的點數=6﹜

  D1=﹛出現的點數不大于1﹜D2=﹛出現的點數大于3﹜

  D3=﹛出現的點數小于5﹜,E=﹛出現的點數小于7﹜

  f=﹛出現的點數大于6﹜,G=﹛出現的點數為偶數﹜

  H=﹛出現的點數為奇數﹜

  ⑴以引入例中的事件c1和事件H,事件c1和事件D1為例講授事件之的包含關系和相等關系。

  ⑵從以上兩個關系學生不難發現事件間的關系與集合間的關系相類似。進而引導學生思考,是否可以把事件和集合對應起來。

  「設計意圖」引出我們接下來要學習的主要內容:事件之間的關系與運算

  2、探究新知

  ㈠事件的關系與運算

  ⑴經過上面的思考,我們得出:

  試驗的可能結果的全體←→全集

  ↓↓

  每一個事件←→子集

  這樣我們就把事件和集合對應起來了,用已有的集合間關系來分析事件間的關系。

  集合的并→兩事件的并事件(和事件)

  集合的交→兩事件的交事件(積事件)

  在此過程中要注意幫助學生區分集合關系與事件關系之間的不同。

  (例如:兩集合A∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發生,表示或者事件A發生,或者事件B發生。)

  「設計意圖」為更好地理解互斥事件和對立事件打下基礎,

  ⑵思考:①若只擲一次骰子,則事件c1和事件c2有可能同時發生么?

  ②在擲骰子實驗中事件G和事件H是否一定有一個會發生?

  「設計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來將要學習的互斥事件和對立事件,讓學生從實際案例中體驗它們各自的特征以及它們之間的區別與聯系。

  ⑶總結出互斥事件和對立事件的概念,并通過多媒體的圖形演示使學生們能更好地理解它們的特征以及它們之間的區別與聯系。

  ⑷練習:通過多媒體顯示兩道練習,目的是讓學生們能夠及時鞏固對互斥事件和對立事件的學習,加深理解。

  ㈡概率的基本性質:

  ⑴回顧:頻率=頻數/試驗的次數

  我們知道當試驗次數足夠大時,用頻率來估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質、

  (通過對頻率的理解并結合前面投硬幣的實驗來總結出概率的基本性質,師生共同交流得出結果)

  3、典型例題探究

  例1一個射手進行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?

  事件A:命中環數大于7環;事件B:命中環數為10環;

  事件c:命中環數小于6環;事件D:命中環數為6、7、8、9、10環、

  分析:要判斷所給事件是對立還是互斥,首先將兩個概念的聯系與區別弄清楚

  例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問:

  (1)取到紅色牌(事件c)的概率是多少?

  (2)取到黑色牌(事件D)的概率是多少?

  分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).

  「設計意圖」通過這兩道例題,進一步鞏固學生對本節課知識的掌握,并將所學知識應用到實際解決問題中去。

  4、課堂小結

  ⑴理解事件的關系和運算

  ⑵掌握概率的基本性質

  「設計意圖」小結是引導學生對問題進行回味與深化,使知識成為系統。讓學生嘗試小結,提高學生的總結能力和語言表達能力。教師補充幫助學生全面地理解,掌握新知識。

  5、布置作業

  習題3、1A1、3、4

  「設計意圖」課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

  五、板書設計

  概率的基本性質

  一、事件間的關系和運算

  二、概率的基本性質

  三、例1的板書區

  例2的板書區

  四、規律性質總結

高中數學說課稿 篇3

  函數的單調性

  今天我說課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。

  一、說教材

  1、教材的地位和作用

  本節內容選自北師大版高中數學必修1,第二章第3節。函數是高中數學的課程,它是描述事物運動變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學習奠定重要基礎。

  2、學情分析

  本節課的學生是高一學生,他們在初中階段,通過一次函數、二次函數、反比例函數的學習已經對函數的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結果,有利于培養學生的理性思維,為后續函數的學習作準備,也為利用倒數研究單調性的相關知識奠定了基礎。

  教學目標分析

  基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

  1.知識與技能(1)理解函數的單調性和單調函數的意義;

  (2)會判斷和證明簡單函數的單調性。

  2.過程與方法

  (1)培養從概念出發,進一步研究性質的意識及能力;

  (2)體會數形結合、分類討論的數學思想。

  3.情感態度與價值觀

  由合適的例子引發學生探求數學知識的欲望,突出學生的主觀能動性,激發學生學習數學的興趣。

  三、教學重難點分析

  通過以上對教材和學生的分析以及教學目標,我將本節課的重難點

  重點:

  函數單調性的概念,判斷和證明簡單函數的單調性。

  難點:

  1.函數單調性概念的認知

  (1)自然語言到符號語言的轉化;

  (2)常量到變量的轉化。

  2.應用定義證明單調性的代數推理論證。

  四、教法與學法分析

  1、教法分析

  基于以上對教材、學情的分析以及新課標的教學理念,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。

  2、學法分析

  新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法理解函數的單調性及特征。

  五、教學過程

  為了更好的實現本課的三維目標,并突破重難點,我設計以下五個環節來進行我的教學。

  (一)知識導入

  溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學生作出這些函數的圖像,然后讓學生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學生掌握基本初等函數圖像的情況,而且符合學生的認知結構,通過學生自主探究,從知識產生、發展的過程中構建新概念,有利于激發學生的思維和學習的積極主動性。

  (二)講授新課

  1.問題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個區間是上升的,在哪個區間是下降的?

  通過學生熟悉的圖像,及時引導學生觀察,函數圖像上A點的運動情況,引導學生能用自然語言描述出,隨著x增大時圖像變化規律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。

  2.觀察函數y=x2隨自變量x變化的情況,設置啟發式問題:

  (1)在y軸的右側部分圖象具有什么特點?

  (2)如果在y軸右側部分取兩個點(x1,y1),(x2,y2),當x1

  (3)如何用數學符號語言來描述這個規律?

  教師補充:這時我們就說函數y=x2在(0,+∞)上是增函數。

  (4)反過來,如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢?

  類似地分析圖象在y軸的左側部分。

  通過對以上問題的分析,從正、反兩方面領會函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關鍵詞,如:區間內,任意,當x1

  仿照單調增函數定義,由學生說出單調減函數的定義。

  教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個區間上的局部性質,也就是說,一個函數在不同的區間上可以有不同的單調性。

  (我將給出函數y=x2,并畫出這個函數的圖像,讓學生觀察函數圖像的特點,讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解)

  (三)鞏固練習

  1練習1:說出函數f(x)=的單調區間,并指明在該區間上的單調性。x

  練習2:練習2:判斷下列說法是否正確

  ①定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上的增函數。

  ②定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上不是減函數。

  1③已知函數y=,因為f(-1)

  1我將給出一些具體的函數,如y=,f(x)=3x+2讓學生說出函數的單調區間,并指明在該區間x

  上的單調性。通過這種練習的方式,幫助學生鞏固對知識的掌握。

  (四)歸納總結

  我先讓學生進行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節課的教學過程做好準備。

  (五)布置作業

  必做題:習題2-3A組第2,4,5題。

  選做題:習題2-3B組第2題。

  新課程理念告訴我們,不同的人在數學上可以獲得不同的發展,因此要設計不同程度要求的習題。

  篇二:高一數學必修一說課稿

  二次函數的圖像說課稿

  今天我說課的題目是《二次函數的圖像》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計五方面逐一加以分析和說明。

  一、教材分析

  教材的地位和作用

  本節內容選自北師大版高中數學必修1,第二章第4.1節。二次函數的圖像在教材中起著承上啟下的作用。

  學情分析

  本節課的學生是高一學生,他們在初中的時候已經學習過有關內容,為本節課的學習打下了基礎,另一方面,二次函數解析式中的系數由常數轉變為參數,使學生對二次函數的圖像由感性認識上升到理性認識,能培養學生利用數形結合思想解決問題的能力。

  二、教學目標分析

  基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

  1.知識與技能

  理解二次函數中參數a,b,c,h,k對其圖像的影響;

  2.過程與方法

  通過體驗對二次函數圖像平移的研究方法,能遷移到其他函數圖像的研究。

  3.情感態度與價值觀

  通過本節的學習,進一步體會數形結合思想的作用,感受到數學中數與形的辯證統一。

  三、教學重難點分析

  通過以上對教材和學生的分析以及教學目標,我將本節課的重難點確定如下

  重點:

  二次函數圖像的平移變換規律及應用。

  難點:

  探索平移對函數解析式的影響及如何利用平移變換規律求函數解析式,并能把平移變換規律遷移到其他函數。

  四、教法與學法分析

  1、教法分析

  基于以上對教材、學情的分析以及新課改的要求,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。

  2、學法分析

  新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法進行學習。

  五、教學過程

  為了更好的實現本課的三維目標,并突破重難點,我將設計以下五個環節來進行我的教學。

  (1)知識導入

  溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x2、y=2x2,讓學生作出這些函數的圖像,然后讓學生比較這些函數圖像的相同點和不同點,由此引入我的新課。一方面讓學生總結復習已有知識,為后面的學習做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗。

  (2)講授新課

  例1:畫出函數y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像

  讓學生畫出他們的圖像并觀察函數圖像的特點,再讓學生與多媒體課件展示的圖像進行對比,得出結論:若二次函數的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。

  前面的練習和例題,基本涵蓋了二次函數圖像平移變換的各種情況,啟發并引導了學生將實例的結論進行總結,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負右移;k正上移,k負下移。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解,

  (3)鞏固練習

  我將組織學生進行練習,完成課本44頁1-3題。通過這種練習的方式,幫助學生鞏固和加深二次函數中參數對圖像的影響。

  (4)歸納總結

  我先讓學生進行小結,然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的'學習情況有一定的了解,可以進行適當反思,為下一節課的教學過程做好準備。

  (5)布置作業

  略

高中數學說課稿 篇4

  一、教材分析

  1。《指數函數》在教材中的地位、作用和特點

  《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。

  此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。

  2。教學目標、重點和難點

  通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:

  知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。

  技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。

  素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。

  鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:

  (1)知識目標:①掌握指數函數的概念;②掌握指數函數的圖象和性質;③能初步利用指數函數的概念解決實際問題;

  (2)技能目標:①滲透數形結合的基本數學思想方法②培養學生觀察、聯想、類比、猜測、歸納的能力;

  (3)情感目標:①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力③領會數學科學的應用價值。

  (4)教學重點:指數函數的圖象和性質。

  (5)教學難點:指數函數的圖象性質與底數a的關系。

  突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。

  二、教法設計

  由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:

  1。創設問題情景。按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。

  2。強化“指數函數”概念。引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。

  3。突出圖象的作用。在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。

  4。注意數學與生活和實踐的聯系。數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。

  三、學法指導

  本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:

  1。再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。

  2。領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。

  3。在互相交流和自主探

高中數學說課稿 篇5

  一、說教材:

  1、教材的地位與作用

  導數是微積分的核心概念之一,它為研究函數提供了有效的方法. 在前面幾節課里學生對導數的概念已經有了充分的認識,本節課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數的幾何意義,更有利于學生理解導數概念的本質內涵. 這節課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發現、思維、運用形成完整概念. 通過本節的學習,可以幫助學生更好的體會導數是研究函數的單調性、變化快慢等性質最有效的工具,是本章的關鍵內容。

  2、教學的重點、難點、關鍵

  教學重點:導數的幾何意義、切線方程的求法以及“數形結合,逼近”的思想方法。

  教學難點:理解導數的幾何意義的本質內涵

  1) 從割線到切線的過程中采用的逼近方法;

  2) 理解導數的概念,將多方面的意義聯系起來,例如,導數反映了函數f(x)在點x附近的變化快慢,導數是曲線上某點切線的斜率,等等.

  二、說教學目標:

  根據新課程標準的要求、學生的認知水平,確定教學目標如下:

  1、知識與技能 :

  通過實驗探求理解導數的幾何意義,理解曲線在一點的切線的概念,會求簡單函數在某點的切線方程。

  過程與方法:

  經歷切線定義的形成過程,培養學生分析、抽象、概括等思維能力;體會導數的思想及內涵,完善對切線的認識和理解

  通過逼近、數形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。

  3、情感態度與價值觀:

  滲透逼近、數形結合、以直代曲等數學思想,激發學生學習興趣,引導學生領悟特殊與一般、有限與無限,量變與質變的辯證關系,感受數學的統一美,意識到數學的應用價值

  三、說教法與學法

  對于直線來說它的導數就是它的斜率,學生會很自然的思考導數在函數圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:

  教法:從圓的切線的定義引入本課,再引導學生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的定義.同樣通過幾何畫板的實驗觀察得到導數的幾何意義和直觀感知“逼近”的數學思想.因此,我采用實驗觀察法、探究性研究教學和信息技術輔助教學法相結合,以突出重點和突破難點;

  學法:為了發揮學生的主觀能動性,提高學生的綜合能力,本節課采取了

  自主 、合作、探究的學習方法。

  教具: 幾何畫板、幻燈片

  四、說教學程序

  1.創設情境

  學生活動——問題系列

  問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?

  問題2 如圖直線l是曲線C的切線嗎?

  (1)與 (2)與 還有直線與雙曲線的位置關系

  問題3 那么對于一般的曲線,切線該如何定義呢?

  【設計意圖】:通過類比構建認知沖突。

  學生活動——復習回顧

  導數的定義

  【設計意圖】:從理論和知識基礎兩方面為本節課作鋪墊。

  2.探索求知

  學生活動——試驗探究

  問一;求導數的步驟是怎樣的?

  第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數就是。

  【設計意圖】:這是從“數”的角度描述導數,為探究導數的幾何意義做準備。

  問二;你能借助圖像說說平均變化率表示什么嗎?請在函數圖像中畫出來。

  【設計意圖】:通過學生動手實踐得到平均變化率表示割線PQ的斜率。

  問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請在圖像中畫出來。

  【設計意圖】:分別從“數”和“形”的角度描述的過程情況。從數的角度看,,Q();從形的角度看, 的過程中,Q點向P點無限趨近,割線PQ趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。

  探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導給出一般曲線的切線定義。

  【設計意圖】: 借助多媒體教學手段引導學生發現導數的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數與形兩個角度強化學生對導數概念的理解。

  問四;你能從上述過程中概括出函數在處的導數的幾何意義嗎?

  【設計意圖】:引導學生發現并說出:,割線PQ切線PT,所以割線

  PQ的斜率切線PT的斜率。因此,=切線PT的斜率。

  五、教學評價

  1、通過學生參加活動是否積極主動,能否與他人合作探索,對學生的學習過程評價;

  2、通過學生對方法的選擇,對學生的學習能力評價;

  3、通過練習、課后作業,對學生的學習效果評價.

  4、教學中,學生以研究者的身份學習,在問題解決的過程中,通過自身的體驗對知識的認識從模糊到清晰,從直觀感悟到精確掌握;

  5、本節課設計目標力求使學生體會微積分的基本思想,感受近似與精確的統一,運動和靜止的統一,感受量變到質變的轉化。希望利用這節課滲透辨證法的思想精髓.

高中數學說課稿 篇6

  我說課的內容是高中數學第二冊(上冊)第七章《直線和圓的方程》中的第六節“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進行闡述:

  一、教材分析

  教材的地位和作用

  “曲線和方程”這節教材揭示了幾何中的形與代數中的數相統一的關系,為“作形判數”與“就數論形”的相互轉化開辟了途徑,這正體現了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!

  根據以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。

  二、教學目標

  根據教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:

  知識目標:

  1、了解曲線上的點與方程的解之間的一一對應關系;

  2、初步領會“曲線的方程”與“方程的曲線”的概念;

  3、學會根據已有的情景資料找規律,進而分析、判斷、歸納結論;

  4、強化“形”與“數”一致并相互轉化的思想方法。

  能力目標:

  1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;

  2、在形成曲線和方程的概念的教學中,學生經歷觀察、分析、討論等數學活動過程,探索出結論,并能有條理的闡述自己的觀點;

  3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的思想方法,提高思維品質,發展應用意識。

  情感目標:

  1、通過概念的引入,讓學生感受從特殊到一般的認知規律;

  2、通過反例辨析和問題解決,培養合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創新的科學精神。

  三、重難點突破

  “曲線的方程”與“方程的曲線”的概念是本節的重點,這是由于本節課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規定兩個關系產生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。

  怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節的難點。因為學生在作業中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現象在高考中也屢見不鮮。為了突破難點,本節課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學生再一次體會“二者”缺一不可。

  四、學情分析

  此前,學生已知,在建立了直角坐標系后平面內的點和有序實數對之間建立了一一對應關系,已有了用方程(有時以函數式的形式出現)表示曲線的感性認識(特別是二元一次方程表示直線),現在要進一步研究平面內的曲線和含有兩個變數的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區別。

高中數學說課稿 篇7

各位老師:

  大家好!我叫張西元。我說課的題目是《系統抽樣》,內容選自于蘇教版必修3第二章第一節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等五大方面來闡述我對這節課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  學生已初步了解掌握了簡單隨機抽樣的兩種方法,即抽簽法與隨機數表法,在此基礎上進一步學習系統抽樣,它也是“統計學”的重要組成部分,通過對系統抽樣的學習,更加突出統計在日常生活中的應用,體現它在中學數學中的地位。

  2 教學的重點和難點

  重點:正確理解系統抽樣的概念,能夠靈活應用系統抽樣的方法解決統計問題。難點:當 不是整數時的處理辦法,個體編號具有某種周期性時,“壞樣本”的理解。

  二、教學目標分析

  1.知識與技能目標:

  (1)正確理解系統抽樣的概念;

  (2)掌握系統抽樣的一般步驟;

  (3)正確理解系統抽樣與簡單隨機抽樣的關系;

  2、過程與方法目標:

  通過對實際問題的探究,歸納應用數學知識解決實際問題的方法,理解分類討論的數學方法高考資源

  3、情感態度與價值觀目標:

  通過數學活動,感受數學對實際生活的需要,體會現實世界和數學知識的聯系

  三、教學方法與手段分析

  1.教學方法:為了充分讓學生自己分析、判斷、自主學習、合作交流。因此,我采用討論發現法教學。

  2.教學手段:通過各種教學媒體(計算機)調動學生參與課堂教學的主動性與積極性。

  四、教學過程分析

  (一)新課引入

  1、復習提問:

  (1)什么是簡單隨機抽樣?有哪兩種方法?

  (2)抽簽法與隨機數表法的一般步驟是什么?

  (3)簡單隨機抽樣應注意哪兩個原則?

  (4)什么樣的總體適合簡單隨機抽樣?為什么?

  [設計意圖]通過復習提問進一步理解掌握簡單隨機抽樣的概念方法和步驟?為新課學習打基礎

  2、實例探究

  實例:某學校為了了解高一年級學生對教師教學的意見,打算從高一年級500名學生中抽取50名進行調查,除了用簡單隨機抽樣獲取樣本外,你能否設計其他抽取樣本的方法?

  當總體數量較多時,應當如何抽取?結合具體事例探究問題,設計你的抽取樣本的方法。抽取的樣本公平性與代表性如何?學生自主探究后小組討論回答。

  [設計意圖]通過設置問題情境,讓學生參與問題解決的全過程,引導學生探究發現新知識新方法,完成從總體中抽取樣本,并發現“等距抽樣”的特性,從而形成感性的系統抽樣的概念與方法。這樣做既充分體現學生的主體地位和教師的主導作用,同時也較好地貫徹新課程所倡導“自主探究、合作交流”的學習方式。

  (二)新課講授

  1、系統抽樣的概念方法步驟

  (學生閱讀課本上的內容,教師引導學生總結歸納得出“系統抽樣”的概念,并點明課題)

  [設計意圖]經歷實例探究過程,學生對系統抽樣的概念方法步驟應有大致了解,輔以教師引導,從具體到一般,本節新課題的學習便水到渠成。

  2、典型例題精析

  例1、某校高中三年級的300名學生已經編號為1,2,……,300,為了了解學生的學習情況,要按10%的比例抽取一個樣本,請用系統抽樣的方法進行抽取,并寫出過程。

  (教師題意分析,引導學生應用新知識新方法,學生分析思考,探究解題,小組討論后口述解題過程)

  [設計意圖]實例鞏固,在得出新課的有關知識之后,再次讓學生在解決實際問題的過程中,進一步理解掌握系統抽樣的方法步驟,達到學以致用的技能,培養“學數學,用數學”的意識。

  例2、某單位在職職工共624人,為了調查工人用于上班途中的時間,決定抽取10%的工人進行調查,試采用系統抽樣方法抽取所需的樣本。

  [設計意圖]當 不是整數時,設置本題讓學生嘗試回答,并形成一般思路與方法。

  (三) 練習鞏固

  1、將全班學生按男女生交替排成一路縱隊,用擲骰的方法在前6名學生中任選一名,用 表示該名學生在隊列中的序號,將隊列中序號為 ,(k=1,2,3,…)的學生抽出作為樣本,這種抽樣方法叫做系統抽樣嗎?為什么?其樣本的代表性與公平性如何?

  2、若按體重大小次序排成一路縱隊呢?

  [設計意圖]配合課本第60頁“邊空”問題:“請將這種抽樣方法與簡單隨機抽樣做一個比較,你認為系統抽樣能提高樣本的代表性嗎?為什么?”,幫助理解個體編號具有某種周期性時,樣本代表性較差的特點。同時分析系統抽樣的優點與缺點。

  (四)回顧小結

  1、師生共同回顧系統抽樣的概念方法與步驟

  2、與簡單隨機抽樣比較,系統抽樣適合怎樣的總體情況?

  3、當 不是整數時,一般步驟是什么?此時樣本的公平性與代表性如何?

  (五)布置作業

  課本第61頁的練習第1,2,3題

  設計意圖:課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。

【實用的高中數學說課稿范文合集七篇】相關文章:

實用的高中數學說課稿模板合集七篇08-18

實用的高中數學說課稿范文合集5篇08-11

實用的高中數學說課稿范文合集9篇08-10

實用的高中數學說課稿范文合集6篇08-08

實用的高中數學說課稿范文合集六篇08-06

實用的高中數學說課稿范文錦集七篇08-20

實用的高中數學說課稿范文匯編七篇08-20

實用的高中數學說課稿范文匯總七篇08-20

實用的高中數學說課稿范文集錦七篇08-16

主站蜘蛛池模板: 额尔古纳市| 于都县| 韶关市| 华蓥市| 滨州市| 根河市| 湾仔区| 义乌市| 谢通门县| 太仓市| 剑河县| 通州市| 醴陵市| 甘孜县| 鄂伦春自治旗| 呼图壁县| 宜昌市| 安顺市| 英超| 怀来县| 抚远县| 古田县| 连城县| 昌邑市| 清河县| 呼图壁县| 延长县| 靖州| 东山县| 乐平市| 沙河市| 德钦县| 简阳市| 永福县| 即墨市| 项城市| 绍兴县| 洪洞县| 广丰县| 开远市| 上高县|